
BULDING A DIY ZERO-TRUST SSH CA
SECURE AND TRANSPARENT SSH ACCESS MANAGEMENT WITHOUT BLOAT

András Veres-Szentkirályi 2021-08-28



$ whoami

András Veres-Szentkirályi
I OSCP, GWAPT, SISE
I Silent Signal co-founder
I pentester, toolmaker



Fahrplan

1 The basics

2 The problem

3 Our solution

4 Final thoughts



SSH in a nutshell

I complex protocol standardized in RFCs
I PFS encryption, server authentication
I multiple authentication methods



Hardware tokens

I can be cheap
I or even “free” like Krypton

I can be “something you have” in 2FA
I and even enforce “something you know”. . .
I . . .and/or “something you are”

I can be used in various ways
I resulting in di�erent security levels

I can be lost
I more on that later

I can be standardized
I PIV, OpenPGP, FIDO, FIDO2, CTAP, U2F. . .



Fahrplan

1 The basics

2 The problem

3 Our solution

4 Final thoughts



Authentication

I small non-tech organizations and personal servers
I few servers to log into
I few users to log in
I manual tinkering works great

I big organizations
I SSO
I dedicated support for this SPoF

I problems for those between the above two
I technical users
I revocation
I tokens



SSH and hardware tokens

I YubiKey OTP → DEMO1
I easy to manage, compatible with everything
I not so secure (think MITM)

I SSH public key authentication → DEMO2
I more secure (no MITM possible)
I technical users can be limited (see AUTHORIZED_KEYS in sshd(8))
I who manages the keys? (see AuthorizedKeysCommand)
I public key can come from anywhere (file or device)
I can use PKCS#11
I GnuPG o�ers SSH agent emulation
I no expiration

I SSH certificates



SSH certificates

I certificate: issuer signs a statement about a subject’s public key
I SSH certificate: much simpler than X.509

I simple serialization format
I no multi-layer PKI implemented

I has expiration, can be revoked
I can have limitations (e.g. which commands can be executed)
I lots of trust placed in CA(s)
I much less supported than “plain” public key authentication

I OpenSSH supports a lot, yet not everything
I most other clients – not so much
I OpenSSH example: port forward granularity



SSH certificate authentication

I TrustedUserCAKeys: like authorized_keys, just for CAs
I Principal: list of strings

I can be a literal username → DEMO3
I can match an entry in AuthorizedPrincipalsFile

I AuthorizedPrincipalsCommand: taking it to the next level, like with keys
I RevokedKeys: refuses otherwise valid certificates



CA trust and transparency

I has the CA signed a certificate it shouldn’t have?
I can the CA demonstrate that its key is secure?
I do leaf certificates match the policy?

I expiration date
I key security
I limitations

I what to do if something has gone wrong?
I compromised CA
I compromised user key
I improperly issued certificates
I destroyed/lost tokens



Fahrplan

1 The basics

2 The problem

3 Our solution

4 Final thoughts



Attestation

“The concept of attestation is to cryptographically certify that a certain asymmetric key has
been generated on device, and not imported. This can be used to prove that no other copies of
the asymmetric key exist.” – https://developers.yubico.com/PGP/Attestation.html

I the implementation is YubiKey-specific, but the idea is not
I X.509 both for PIV and OpenPGP
I can be parsed with OpenSSL (→ DEMO4) and https://cryptography.io/

I our take: necessary for regular users and CAs

https://developers.yubico.com/PGP/Attestation.html
https://cryptography.io/


OpenPGP ( 6= GnuPG)

I supports EdDSA (Ed25519) on newer YubiKeys
I unlike PIV, which supports RSA and ECDSA only

I subpar everyday UX
I unlike PIV, which has https://github.com/FiloSottile/yubikey-agent

I has a signature counter → DEMO5
I but only for the signing key, not the (technically identical) authentication key
I GnuPG SSH agent emulation can only use latter

I besides GnuPG, there’s a low-level Python implementation
I https://github.com/bitlogik/OpenPGPpy→ DEMO6
I Ed25519 had problems, see issue #1

I our take: signature counter is a must-have for CAs

https://github.com/FiloSottile/yubikey-agent
https://github.com/bitlogik/OpenPGPpy


How it all works together



Attacker model

I attacker can make the CA sign something it shouldn’t have
I if it gets saved into the database, it can be seen during an audit
I if it’s not in the database, counter doesn’t match the number of certs
I centralized logging and SIEM could improve this even further

“Testing shows the presence, not the absence of bugs” – Dijkstra (1969) J.N. Buxton and B. Randell,
eds, So�ware Engineering Techniques, April 1970, p. 16. Report on a conference sponsored by the NATO Science
Committee, Rome, Italy, 27–31 October 1969.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF


Further tests

I every attestation chain is valid
I every attestation leaf certificate indicate hw-generated keys
I every attestation leaf certificate matches the unique Yubikey ID
I every SSH certificate is valid and unique

I the public key within the certificate matches that of the Pubkey
I the signature is can be verified using the Pubkey of the CA
I the certificates di�er in at least 1 bit, thus their signature di�ers as well, proving that the

signature counter was incremented
I every SSH certificate has an expiration date within a preconfigured limit



Fahrplan

1 The basics

2 The problem

3 Our solution

4 Final thoughts



The result

I “Look ma, no secrets!”
I anyone can inspect the database and verify its integrity
I currently Python/Django

I nothing specific to these stacks
I could be implemented in anything else
I we already have it in the stack and the libraries were nice

I many hate PGP. . .but we use nothing (OpenPGP serialization, GnuPG tools, keyservers,
web-of-trust) that this hatred is focused on

I many hate certificates. . .but we use nothing (X.509 and thus ASN.1, sub-CAs) that this
hatred is focused on



Future plans

I web interface (Django makes this easy)
I self-service renewal
I handle first three PGP (self-)signatures



Outro

I source code and binaries under MIT: https://github.com/silentsignal/zsca
I core functionality WORKSFORME
I pull requests welcome
I we’re hiring!

https://github.com/silentsignal/zsca


THANKS!

ANDRÁS VERES-SZENTKIRÁLYI

vsza@silentsignal.hu

facebook.com/silentsignal.hu

@SilentSignalHU

@dn3t

mailto:vsza@silentsignal.hu
https://facebook.com/silentsignal.hu
https://twitter.com/SilentSignalHU
https://twitter.com/dn3t

	The basics
	The problem
	Our solution
	Final thoughts

