SECURE AND TRANSPARENT SSH ACCESS MANAGEMENT WITHOUT BLOAT

silent

signal Andras Veres-Szentkiralyi



Andras Veres-Szentkiralyi
OSCP, GWAPT, SISE
Silent Signal co-founder
pentester, toolmaker




inal tﬁou»

| @ Our soluti

The prob

l @ The basics




complex protocol standardized in RFCs

PFS encryption, server authentication
multiple authentication methods



can be cheap
or even “free” like Krypton
can be “something you have” in 2FA

and even enforce “something you know”...
...and/or “something you are”

can be used in various ways
resulting in different security levels
can be lost
more on that later
can be standardized
PIV, OpenPGP, FIDO, FIDO2, CTAP, U2F...






small non-tech organizations and personal servers
few servers to log into
few users to log in
manual tinkering works great

big organizations

SSO

dedicated support for this SPoF
problems for those between the above two

technical users
revocation
tokens



YubiKey OTP — DEMO;

easy to manage, compatible with everything
not so secure (think MITM)

SSH public key authentication — DEMO,
more secure (no MITM possible)
technical users can be limited (see AUTHORIZED_KEYS in sshd(8))
who manages the keys? (see AuthorizedKeysCommand)
public key can come from anywhere (file or device)
can use PKCS#11
GnuPG offers SSH agent emulation
no expiration

SSH certificates



certificate: issuer signs a statement about a subject’s public key
SSH certificate: much simpler than X.509

simple serialization format
no multi-layer PKI implemented

has expiration, can be revoked
can have limitations (e.g. which commands can be executed)
lots of trust placed in CA(s)

much less supported than “plain” public key authentication

OpenSSH supports a lot, yet not everything
most other clients - not so much
OpenSSH example: port forward granularity



TrustedUserCAKeys: like authorized_keys, just for CAs
Principal: list of strings

can be a literal username — DEMO3

can match an entry in AuthorizedPrincipalsFile

AuthorizedPrincipalsCommand: taking it to the next level, like with keys
RevokedKeys: refuses otherwise valid certificates



has the CA signed a certificate it shouldn’t have?
can the CA demonstrate that its key is secure?

do leaf certificates match the policy?

expiration date
key security
limitations

what to do if something has gone wrong?
compromised CA
compromised user key
improperly issued certificates
destroyed/lost tokens



inal tﬁou»

| @ Our soluti

The prob

l @ The basics




“The concept of attestation is to cryptographically certify that a certain asymmetric key has
been generated on device, and not imported. This can be used to prove that no other copies of
the asymmetric key exist.” - https://developers.yubico.com/PGP/Attestation.html

the implementation is YubiKey-specific, but the idea is not

X.509 both for PIV and OpenPGP

can be parsed with OpenSSL (— DEMOQ,) and https://cryptography.io/
our take: necessary for regular users and CAs


https://developers.yubico.com/PGP/Attestation.html
https://cryptography.io/

supports EADSA (Ed25519) on newer YubiKeys

unlike PIV, which supports RSA and ECDSA only
subpar everyday UX

unlike PIV, which has https://github.com/FiloSottile/yubikey-agent
has a signature counter — DEMO5

but only for the signing key, not the (technically identical) authentication key
GnuPG SSH agent emulation can only use latter

besides GnuPG, there’s a low-level Python implementation

https://github.com/bitlogik/OpenPGPpy — DEMOg
Ed25519 had problems, see issue #1

our take: signature counter is a must-have for CAs


https://github.com/FiloSottile/yubikey-agent
https://github.com/bitlogik/OpenPGPpy

el
<¢
Sign public key X with CA'Y

-

Give me the SIG pubkey

-
What keys do you have? LH

Y

Sign P with the SIG key

[t

S




attacker can make the CA sign something it shouldn’t have

if it gets saved into the database, it can be seen during an audit
if it’s not in the database, counter doesn’t match the number of certs
centralized logging and SIEM could improve this even further

“Testing shows the presence, not the absence of bugs” - Dijkstra (1969) J.N. Buxton and B. Randell,
eds, Software Engineering Techniques, April 1970, p. 16. Report on a conference sponsored by the NATO Science
Committee, Rome, Italy, 27-31 October 1969.
http://homepages.cs.ncl.ac.uk/brian.randel1/NATO/nato1969.PDF


http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

every attestation chain is valid

every attestation leaf certificate indicate hw-generated keys
every attestation leaf certificate matches the unique Yubikey ID

every SSH certificate is valid and unique

the public key within the certificate matches that of the Pubkey

the signature is can be verified using the Pubkey of the CA

the certificates differ in at least 1 bit, thus their signature differs as well, proving that the
signature counter was incremented

every SSH certificate has an expiration date within a preconfigured limit






“Look ma, no secrets!”

anyone can inspect the database and verify its integrity
currently Python/Django

nothing specific to these stacks

could be implemented in anything else

we already have it in the stack and the libraries were nice
many hate PGP...but we use nothing (OpenPGP serialization, GnuPG tools, keyservers,
web-of-trust) that this hatred is focused on
many hate certificates...but we use nothing (X.509 and thus ASN.1, sub-CAs) that this
hatred is focused on



web interface (Django makes this easy)

self-service renewal

handle first three PGP (self-)signatures



source code and binaries under MIT: https://github.com/silentsignal/zsca
core functionality WORKSFORME
pull requests welcome

we’re hiring!


https://github.com/silentsignal/zsca

THANKS!

0009

ANDRAS VERES-SZENTKIRALYI
vsza@silentsignal.hu
facebook.com/silentsignal.hu

@SilentSignalHU

@dn3t a



mailto:vsza@silentsignal.hu
https://facebook.com/silentsignal.hu
https://twitter.com/SilentSignalHU
https://twitter.com/dn3t

	The basics
	The problem
	Our solution
	Final thoughts

