JSON WEB TOKENS CONSIDERED HARMFUL

silent

signal Andras Veres-Szentkiralyi

Andras Veres-Szentkiralyi
CISSP, OSCP, GWAPT, SISE
Silent Signal co-founder
pentester, toolmaker

@ High level
® About JWTs
® Stateless approach

@ Design issues
@ Cryptography
e HMAC

® RSA
® ECDSA

@ Misc

JWTs are literally everywhere by now

PSD2 APIs
long-term tokens for mobile apps

our RSA public key recovery tool from February 2022
CVE-2022-21449: Psychic Signatures in Java from April 2022
and we still encounter low-entropy HMAC secrets in 2022

JSON Web Signature, RFC 7515

BASE64URL (UTF8(JWS Protected Header)) || ’.’ || BASE64URL(JWS Payload) ||
>.” || BASE64URL(JWS Signature)

signature is calculated on ASCII (BASE64URL (UTF8(JWS Protected Header)) || .’
| | BASE64URL (JWS Payload))
payload might be detached, see Appendix F

header and signature goes into metadata such as HTTP header
payload is replaced with empty string
similar to XML signatures and WS-Security in the SOAP world

JSON Web Token, RFC 7519
pronounced like the word “jot”

builds on JWS

payload contains set of claims
username
Unix timestamps for issuance and/or expiration

people love using them for stateless session management
http://cryto.net/~joepie91/blog/2016/06/19/
stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/

http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/
http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/

changing the signing key
when auser needs to
invalidate their sessions.

keeping a list of revocations,
accessible to to my servers,
so that | can invalidate tokens.

...just storing an identiier in

the token. and storing the
actual data server-side

storing it in Local Storage
instead of a cookie, o that |
have far more space

making them expire very
quickly. so that a compromised
token is not a very big deal

<

A,
Your blacklisting/
authentication server
goes down, What now?

Assume that any
unknown token
is valid

Assume that an
unknown token
is invali

SECURITY PROBLEM

Once the attacker takes

out the server, he has

free roam, and there's

nothing you can do to
stop him.

"But | can just
hange the

Signing ke

A

USABILITY PROBLEM "So then I'l just have a

user, and base it on their
Sure, except now password, username, or hashi®
EVERY SINGLE USER
has beenlogged out
For every time a
user gets compromised

= =
=
~
~
~
POINTLESS SECURITY PROBLEM USABILITY PROBLEM

Congratulations! You've
reinvented sessions,
with all their problems
(notably, their need for
centralized state).
and gained nothing in

the process, But.

|

SECURITY PROBLEM

unique signing key for every

The implementation you
are usingis less
battle-tested, and you
run a higher risk of
wulnerabilities

Unlike cookies, which
are protected from this,
any JavaScript on the
page can steal it
Including CON scripts!

If your user goes offline
for just a few minutes,
they will have to login
again when they return,

il just use
refresh tokens!"
/

v
SECURITY PROBLEM

You can't revoke the
long-term tokens, which
means you're back to
square one

@ High level
® About JWTs
® Stateless approach

@ Design issues
@ Cryptography
e HMAC

® RSA
® ECDSA

@ Misc

the alg header offers too much flexibility

that parameter comes from an untrusted source

easiest and thus earliest vulnerability: set it to none
parser differentials

WAF catches none (case sensitive)
parser accepts nOnE (case insensitive)

all that assuming that the server even checks it: fail-open

verify() vs. decode()
assuming another node checked it vs. zero-trust

just resending a valid message can cause problem for non-idempotent things
WS-Security used Timestamp and Nonce

JWS/JWT has jti (JWT ID)

order does matter

the verifier must maintain a list of “used” jti values until expiration
parsing and storing jti before verifying the signature — storage DoS

“signing ...is not a tooling problem, but a trust and key distribution problem” (Filippo
Valsorda)

https://docs.google.com/document/d/11yHom20CrsuX8KQJIXBBw@4s80Unjv8zCg_
A7sPAX_9Y/preview

trusting kid too much can be a problem

self-signed tokens can be created using the jwk and jku parameters

https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview

Base64 layer adds a false sense of confidentiality for some
cf. HTTP Basic authentication

JWE (JSON Web Encryption) can help with this

now you have n + 1 problems
invalid curve attack (2017)
Bleichenbacher’s attack (pre-finalized versions only)

@ High level
® About JWTs
® Stateless approach

@ Design issues

® Cryptography
® HMAC

RSA

ECDSA

®

@

@ Misc

symmetric MAC

easy to understand
HS256 required: HMAC + SHA-256
HS384 and HS512 optional

HMAC and the underlying SHA-2 is designed to be fast
secret can have low entropy

John the Ripper supports it out of the box

asymmetric signatures

can be verified with the public key

multiple keys — kid

RS256 recommended: RSASSA-PKCS-v1_5 + SHA-256
RS384 and RS512 optional

PSnnn variants are RSASSA-PSS using SHA-256 and MGF1

verifier trusts the header regarding algorithm

what if we replace RSA with HMAC?
key confusion attacks, such as CVE-2017-11424
will the verifier treat the RSA public key as a HMAC key?

do we know the public key at all?
use-case might or might now involve publishing the public key
public keys being kept in secret are not a common threat model
https://blog.silentsignal.eu/2021/02/08/
abusing-jwt-public-keys-without-the-public-key/

https://blog.silentsignal.eu/2021/02/08/abusing-jwt-public-keys-without-the-public-key/
https://blog.silentsignal.eu/2021/02/08/abusing-jwt-public-keys-without-the-public-key/

Although public key cryptosystems guarantee that the private key can’t be derived from
the public key, signatures, ciphertexts, etc., there are usually no such guarantees for the
public key!

Although RSA involves large numbers, really efficient algorithms exist to find the GCD of
numbers since the ancient times (we don’t have to do brute-force factoring).

Although the presented method is probabilistic, in practice we can usually just try all
possible answers. Additionally, our chances grow with the number of known
message-signature pairs.

The main lesson is: one should not rely on the secrecy of public keys, as these parameters
are not protected by mathematical trapdoors.

https://github.com/silentsignal/rsa_sign2n

https://github.com/silentsignal/rsa_sign2n

asymmetric signatures

can be verified with the public key

multiple keys — kid

ES256 recommended “plus”: P-256 + SHA-256
compatible with iOS Secure Enclave

ES384 (P-384) and ES512 (P-521) optional

G - elliptic curve base point,n x G = O where O is the identity element
ds - private key

Qs = ds x G- public key

z - leftmost bits of the hash of the message

k — cryptographically secure random integer

(x1,1) =k x G

signature consists of r = x; mod nand s = k=%(z + rds) mod n

if k is ever reused, private key d, can be calculated
see PlayStation 3 signing key

Psychic Signatures in Java
https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

affects not only JWT but also SAML assertions, OIDC id tokens
Java 15-18 since the C++ — Java port in 15 introduced the bug

verification steps:
up=2zstandu, =rs-
(X1,y1) = U1 X G+ Uy X Qa
signatureis valid if r = x; (mod n)

1

what if we allow r and s to be 0?

https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

@ High level
® About JWTs
® Stateless approach

@ Design issues
@ Cryptography
e HMAC

® RSA
® ECDSA

@ Misc

JWT might include attributes from an untrusted source

ni ™

artisanal JSON serialization: '{"name”: + untrusted + '", ...}’

some JSON parsers even accept colliding keys

if something is URL-safe, people will put it into the URL
HTTP Referrer headers
logs: HTTPd, reverse proxy, application server, forward proxy

caches
browser history

https://portswigger.net/bappstore/26aaa5ded2f74beeal9e2ed8345a93dd

https://github.com/PortSwigger/jwt-editor
detection

verification

editing

signing

encryption (JWE)

basic attacks

https://portswigger.net/bappstore/26aaa5ded2f74beea19e2ed8345a93dd
https://github.com/PortSwigger/jwt-editor

https://portswigger.net/web-security/jwt

detailed explanations

8 live labs hosted by PortSwigger
they link to our rsa_sig2n repository ;)
they even offer a dockerized version of it

all the labs are free

https://portswigger.net/web-security/jwt

JWS can be used securely for some purposes

JWT should only be used with caution

you shouldn’t pick technologies based on hype

especially if your security depends on it

if something has lots of knobs on it, eventually someone will use it wrong

THANKS!

0009

ANDRAS VERES-SZENTKIRALYI
vsza@silentsignal.hu
facebook.com/silentsignal.hu

@SilentSignalHU

@dn3t a

mailto:vsza@silentsignal.hu
https://facebook.com/silentsignal.hu
https://twitter.com/SilentSignalHU
https://twitter.com/dn3t

	High level
	About JWTs
	Stateless approach

	Design issues
	Cryptography
	HMAC
	RSA
	ECDSA

	Misc

