
Breaking a legacy NSA backdoor

stf

<2022-07-02 Sat>

The device

Previously on camp++

▶ https://pretalx.hsbp.org/camppp7e5/talk/HGP9HS

▶ https://www.youtube.com/watch?v=8VTmfiifkRU

▶ https://hsbp.s3.eu-central-1.amazonaws.com/camppp7e5/backdoor.mp4

https://pretalx.hsbp.org/camppp7e5/talk/HGP9HS
https://www.youtube.com/watch?v=8VTmfiifkRU
https://hsbp.s3.eu-central-1.amazonaws.com/camppp7e5/backdoor.mp4

Elsewhere

▶ https://www.alchemistowl.org/pocorgtfo/pocorgtfo21.pdf 21:12

▶ https://github.com/stef/px1000cr

▶ https://www.ctrlc.hu/~stef/blog/posts/pocorgtfo_21_12_apocrypha.html

https://www.alchemistowl.org/pocorgtfo/pocorgtfo21.pdf
https://github.com/stef/px1000cr
https://www.ctrlc.hu/~stef/blog/posts/pocorgtfo_21_12_apocrypha.html

The attack

We're building a full key recovery attack based on only the
ciphertext.

▶ Algebra! We are building a whole lot of equations and then

▶ feed the equations to Z3 to solve them.

▶ Super simple, if you know how. ;)

The Tool

We use claripy from the angr project which makes it easier to work
with bits and Z3.

The Key

▶ The key is entered as 16 ASCII characters

▶ only the lower 4 bits of each character are use.

▶ 64-bit key, stronger than DES!

The Schema

(c) cryptomuseum

"Mirror Low Nibble"

Before we get into the components, there's an important function
used during initialization of most blocks:

unsigned char invertLoNibble2Hi(unsigned char x) {

return ((~x) << 4) | x;

}

V and C initialization

for(i=0;i<4;i++) {

V[i] = invertLoNibble2Hi(key[i] ^ key[i+4]);

V[i+4] = invertLoNibble2Hi(key[i+8] ^ key[i+12]);

C[i] = V[i] ^ V[i+4] ^ 0xf0;

}

C[i] can only be one of these 16 values after initialization:

{0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78,

0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0}

Strange!

Va and C combination through P S-box

for(i=0;i<4;i++) {

tmp = V[i] ^ CiphertextFifo[i];

acc = map4to4bit[i][tmp >> 4] << 4;

acc |= map4to4bit[i][tmp & 0xf];

pbuf[i] = acc ^ V[i+4];

}

Another anomaly

For the �rst plaintext byte

tmp = V[0] ^ CiphertextFifo[0]

where

CiphertextFifo[0] = V[0] ^ V[4] ^ 0xf0

which drops out V[0] and thus:

tmp == V[4] ^ 0xf0

and we know that all values of V are values where the high nibble is
just the inversion of the low nibble, and if we xor that with 0xf0, we
get that tmp can only be one of these 16 values:

{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,

0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff}

WTF?

Anomaly cont'd

recap:

for(i=0;i<4;i++) {

tmp = V[i] ^ CiphertextFifo[i];

acc = map4to4bit[i][tmp >> 4] << 4;

acc |= map4to4bit[i][tmp & 0xf];

pbuf[i] = acc ^ V[i+4];

}

resulting also acc being of type 0xYY
Later the ciphertext �fo is �lled with ciphertext and loses this
strange structure.

LFSRs initialization

for(i=0;i<15;i++) {

lfsr[i] = invertLoNibble2Hi(key[i]);

}

lfsr[15]=0xff;

Note: if you know the internal state of the LFSRs at any point in
time, you can rewind the state until you get a state were all bytes
have mirrored nibbles and the last byte if 0x�. This is a very cheap
operation! This recovers 60 out of the 64 key bits.

LFSRs update

for(round_counter = 31;round_counter>=0;round_counter--) {

acc = 0;

for(i=0;i<16;i++) { // in the FW this loop is unrolled

acc ^= lfsr[i] & lookupTable[(round_counter+i) & 0xf];

}

acc = ((acc >> 1) ^ acc) & 0x55;

// tmp is twice the sequence 15..0

tmp=(round_counter ^ 0xff) & 0xf;

lfsr[tmp] = ((lfsr[tmp] << 1) & 0xAA) | acc;

}

LFSRs extract

for(i=0;i<4;i++) {

tmp = lfsr[i+7];

// rotate tmp left by 2 bits

tmp = (tmp << 2) | (tmp >> 6);

lfsr_out[i] = tmp ^ lfsr[i];

}

The non-linear mapping F

maps six bytes to one byte.

for(i=8, acc=0;i>0;i--) {

for(j=1,tmp=0;j<4;j++) {

tmp = (tmp << 1) | (lfsr_out[j] >> 7);

lfsr_out[j]<<=1;

tmp = (tmp << 1) | (pbuf[j] >> 7);

pbuf[j]<<=1;

}

tmp=lookupTable6To1bit[tmp];

acc=(acc<<1) + ((tmp>>(i-1)) & 1);

}

the inner loop interleaves lfsrout[1], pbuf[1], . . . lfsrout[3], pbuf[3]
The lookuptable is 64 bytes, indexed by this 6 bit interleaved value,
and taken the ith bit as a result, very compact and e�cient.

The keystream output

acc is the output from the non-linear mapping F:

acc ^= pbuf[0] ^ lfsr_out[0];

tmp = (curChar + 1) & 7;

// rotate acc left by tmp

acc = (acc << tmp) | (acc >> (8-tmp));

ciphertext[curChar] = plaintext[curChar] ^ acc

Updating the ciphertext FIFO

CiphertextFifo[4] = ciphertext[curChar];

for(i=0;i<4;i++) {

// CiphertextFifo[i] = rot_left(CiphertextFifo[i+1]

CiphertextFifo[i] = (CiphertextFifo[i+1] << 1) |

(CiphertextFifo[i+1] >> 7);

}

So far so good

▶ Most of the simple things are already algebra.

▶ Except for the LFSRs, non-linear mapping F and the P S-box.

▶ Let's start with the mappings

def moebius(f,n):

blocksize=1

for step in range(1,n+1):

source=0

while(source < (1<<n)):

target = source + blocksize

for i in range(blocksize):

f[target+i]^=f[source+i]

source+=2*blocksize

blocksize*=2

▶ a.k.a ANF transform, Zhegalkin transform, Positive Polarity
Reed-Muller transform.

▶ converts a lookup table into another lookup table

The F lookup table

static unsigned char lookupTable6To1bit[64]={

0x96, 0x4b, 0x65, 0x3a, 0xac, 0x6c, 0x53, 0x74,

0x78, 0xa5, 0x47, 0xb2, 0x4d, 0xa6, 0x59, 0x5a,

0x8d, 0x56, 0x2b, 0xc3, 0x71, 0xd2, 0x66, 0x3c,

0x1d, 0xc9, 0x93, 0x2e, 0xa9, 0x72, 0x17, 0xb1,

0xb4, 0xe4, 0xa3, 0x4e, 0x27, 0x5c, 0x8b, 0xc5,

0xe8, 0x95, 0xe1, 0xd1, 0x87, 0xb8, 0x1e, 0xca,

0x1b, 0x63, 0xd8, 0x2d, 0xd4, 0x9a, 0x99, 0x36,

0x8e, 0xc6, 0x69, 0xe2, 0x39, 0x35, 0x6a, 0x9c

};

Applying the ANF transform for bits 0..7

f0= 011000100110101010111000111010..
g0= 011001010000111110110111010010..
f1= 110100100011010101110110001101..
g1= 101110001001111011001001110010..
. . .
f7= 100010000101010010010100011010..
g7= 111100001011000100011011001100..

The algebraic normal form of F

this new lookup table g can be converted into multivariate
polynomial over F2

In python:

' ^ '.join(f'{c}')'

for c in ['&'.join(

f"x{i}"

for i, x in enumerate(reversed(f'{a:06b}'))

if x == "1")

for a in range(64)

if moebius[a]=='1']

if c)

The ANF of f4 - TADA! Algebra!

1 � (x0) � (x1) � (x2) � (x0&x2) � (x4) � (x1&x4) � (x0&x1&x4) �
(x1&x2&x4) � (x3&x4) � (x0&x1&x3&x4) � (x0&x2&x3&x4) �
(x0&x1&x2&x3&x4) � (x0&x1&x5) � (x0&x2&x5) � (x1&x2&x5)
� (x3&x5) � (x1&x3&x5) � (x0&x1&x3&x5) � (x2&x3&x5) �
(x4&x5) � (x2&x4&x5) � (x0&x2&x4&x5) � (x3&x4&x5) �
(x0&x3&x4&x5) � (x1&x3&x4&x5) � (x1&x2&x3&x4&x5)

The P transform

▶ The P transform is a 4 bit to 4 bit S-box

▶ We can reduce this problem to the F solution

▶ Simply decompose the 4-to-4 mapping into 4 times 4-to-1 bit
mappings

▶ TADA! Algebra!

The LFSRs I

the update of the LFSRs happens like this:

acc ^= lfsr[i] & lookupTable[(round_counter+i) & 0xf];

The LFSRs II

It turns out the lookup table contains the taps in a bit-sliced
representation. They can be recovered with this python snippet:

taps = (

0x06, 0x0B, 0x0A, 0x78, 0x0C, 0xE0, 0x29, 0x7B,

0xCF, 0xC3, 0x4B, 0x2B, 0xCC, 0x82, 0x60, 0x80)

def extract(taps, i):

left to right

tr = [''.join(str((taps[j] >> b) & 1)

for j in range(16))

for b in range(8)]

horizontal bottoms-up lines appended

return (tr[(i*2)+1]+tr[(i*2)])

for i in range(4):

print(extract(taps, i))

The LFSRs III

(c) cryptomuseum

LFSR VI

In another representation the so-called taps are as following:

32 bit: 11100001111101000100001111110000 e1f443f0

31 bit: 01111011101110001000100010001000 7bb88888

29 bit: 00010111000100100001000100000000 17121100

27 bit: 00000100110011010001010111101010 04cd15ea

The LFSRs VII

The algebraization of the LFSRs

▶ totally ignore that these are LFSRs

▶ angr & symbolic execution to the rescue

▶ consider the value of the 16 bytes of the LFSRs as symbolic

▶ run the update loop in symbolic execution

▶ dump the symbolic value of the output state of the LFSRs
block

Claripy constraints for the 127th bit after the LFSR update

loop

<BV128 lfsr_state[87:87] ^ lfsr_state[63:63] ^

lfsr_state[55:55] ^ lfsr_state[31:31] ^

lfsr_state[23:23] ^ lfsr_state[7:7] ^

lfsr_state[102:102] ^ lfsr_ state[86:86] ^

lfsr_state[70:70] ^ lfsr_state[62:62] ^

lfsr_state[54:54] ^ lfsr_state[46:46] ^

lfsr_state[30:30] ^ lfsr_state[14:14] ..

cleaned up:
ls(127,i+1) = ls7,i � ls14,i � ls23,i � ls30,i � ls31,i � ls46,i � ls54,i � ls55,i
� ls62,i � ls63,i � ls70,i � ls86,i � ls87,i � ls102,i

TADA! Algebra!

Handing it over to Z3

▶ creating the equations takes "signi�cant" time, about
40-something seconds! But these can be reused!

▶ dumped out as ASCII they take about 22 MB

▶ passing it 17 bytes of ciphertext and solving it for the 64 bits
of the key takes less than 4 seconds on this laptop.

▶ if n ciphertext bytes less than 17 are provided then 2(17-n) key
candidates are the result, each key candidate can be tested if
decryption results in meaningful results.

Other attacks

▶ Unsure if the NSA had a SMT solver like z3 back in the 80ies.

▶ What they certainly had were correlation attacks.

▶ It seems reasonable that most of Armknechts1 work was
known by the NSA back then.

▶ Detecting key-reuse is trivial due to 16 + (message length - 1)
keystream bits leaking in every message.

▶ consulted Willi Meier, besides Armknecht the other LFSR
expert, he said this:

The boolean functions look involved. Quite striking that
you found an attack. For the moment, I don't see the
trapdoor[sic] behind.

1
http://madoc.bib.uni-mannheim.de/1352/1/Armknecht.pdf

http://madoc.bib.uni-mannheim.de/1352/1/Armknecht.pdf

Conclusion

▶ full key-recovery in less than 4 seconds with 17 bytes of
ciphertext

▶ px1000Cr is catastrophically weaker than DES

▶ multiple backdoors working together

Thanks

Thanks to ben, phr3ak, the Crypto Museum people, jonathan,
antoine, Valentin, the angr devs, asciimoo and dnet for their
support!

Questions

. . . or silence and staring? :)

	PX1000Cr

