
Klutshnik!!5!

stf

<2023-07-14 Fri>

A detour: Hybrid crypto

[..]hybrid cryptosystem is one which combines the conve-
nience of a public-key cryptosystem with the e�ciency of
a symmetric-key cryptosystem.1

1
https://en.wikipedia.org/wiki/Hybrid_cryptosystem

https://en.wikipedia.org/wiki/Hybrid_cryptosystem

PGP

% echo "asdf" | gpg --encrypt --recipient aaaaaaaaaa | pgpdump

Old: Public-Key Encrypted Session Key Packet(tag 1)(524 bytes)

New version(3)

Key ID - 0x123456789abcdef0

Pub alg - RSA Encrypt or Sign(pub 1)

RSA m^e mod n(4092 bits) - ...

-> m = sym alg(1 byte) + checksum(2 bytes) + PKCS-1 block type 02

New: Symmetrically Encrypted and MDC Packet(tag 18)(64 bytes)

Ver 1

Encrypted data [sym alg is specified in pub-key encrypted session key]

(plain text + MDC SHA1(20 bytes))

AGE

The textual �le header wraps the �le key for one or more
recipients, so that it can be unwrapped by one of the cor-
responding identities. It starts with a version line, followed
by one or more recipient stanzas, and ends with a MAC.2

age-encryption.org/v1

-> X25519 XEl0dJ6y3C7KZkgmgWUicg63EyXJiwBJW8PdYJ/cYBE

qRS0AMjdjPvZ/WT08U2KL4G+PIooA3hy38SvLpvaC1E

--- HK2NmOBN9Dpq0Gw6xMCuhFcQlQLvZ/wQUi/2scLG75s

2
https://github.com/C2SP/C2SP/blob/main/age.md

https://github.com/C2SP/C2SP/blob/main/age.md

Key Management Service (KMS)

Three parties:

▶ Client

▶ (remote) Storage

▶ Key Management Server (KMS)

Traditional KMS encryption

1. KMS has key-encryption-key (KEK)

2. Client chooses data-encryption-key (DEK),
ciphertext = encrypt(DEK , data)

3. Client Sends (DataID, DEK) to KMS

4. KMS responds to client with
(DataID,wrapped_dek = Wrap(KEK ,DEK))

5. Client sends (DataID,wrapped_dek , ciphertext) to Storage

Traditional KMS decryption

1. Client gets (DataID,wrapped_dek , ciphertext) from Storage

2. Client sends (DataID,wrapped_dek) to KMS

3. KMS unwraps the key DEK = Unwrap(KEK ,wrapped_dek)

4. KMS returns (DataID, DEK)

5. Client decrypts ciphertext: data = decrypt(DEK , ciphertext)

Traditional KMS sucks

▶ KMS knows all DEKs

▶ DEK depends on security of transport between KMS/Client
(TLS)

▶ Middlebox and endpoints of TLS also see DEK

▶ KMS can trace usage of DataIDs

▶ Updating KEK is costly - increases time-to-delete old KEK

Oblivious KMS

Use an OPRF!!5!

DEK = OPRF (kc ,DataID)

BOOM! Mind blown.

OKMS rulez!

▶ KMS knows all DEKs

▶ DEK depends on security of transport between KMS/Client
(TLS)

▶ Middlebox and endpoints of TLS also see DEK

▶ KMS can trace usage of DataIDs

▶ Updating KEK is costly - increases time-to-delete old KEK

Updateable OKMS

Use an updateable OPRF!!5!*

▶ KMS knows all DEKs

▶ DEK depends on security of transport between KMS/Client
(TLS)

▶ Middlebox and endpoints of TLS also see DEK

▶ KMS can trace usage of DataIDs

▶ Updating KEK is costly - increases time-to-delete old KEK

* must have at least 2t + 1 shareholders!

Threshold UOKMS

Use an updateable threshold OPRF!!5!
BOOM: no more SPoF!

UOKMS3

"Updatable Oblivious Key Management for Storage Systems"
� Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch

3
https://eprint.iacr.org/2019/1275

https://eprint.iacr.org/2019/1275

Advantages over KMS

▶ hides keys and object identi�ers from the KMS,

▶ o�ers unconditional security for key transport,

▶ provides key veri�ability,

▶ reduces storage,

▶ distributed threshold implementation that enhances protection
against server compromise & denial.

▶ updatable encryption capability that supports key updates (aka
key rotation),

▶ very e�cient non-interactive update procedure,

▶ forward and post-compromise security

▶ public key encryption

Comparison with legacy tools

Pro:

▶ cheap key-rotation

▶ forward & post-compromise security,

▶ threshold operation (t peers need to agree to decrypt)

▶ better resilience against denial/loss of keys.

▶ nice for traveling into hostile countries

▶ KEKs not stored next to ciphertexts

Contra:

▶ Online

▶ Strong authentication needed

are these really disadvantages though?

Anyway

threshold construction

+

updateable encryption

are some really sexy properties, gotta have 'em!
thus. . .

Klutshnik

Klutshnik Overview

The heart of Klutshnik - tOPRF4

the shared secret KMS KEK is never reconstructed!

4
TOPPSS: Cost-minimal Password-Protected Secret Sharing based on Threshold OPRF

https://eprint.iacr.org/2017/363

https://eprint.iacr.org/2017/363

Distributed Key Generation (DKG)5

The "shareholders" participate in a protocol in which they create a
shared secret split among them just like Shamirs Secret Sharing,
but do so in a way, that there is no central - trusted - third-party
and the shared secret itself is never reconstructed.

5
Secure Distributed Key Generation for Discrete-Log Based Cryptosystems

https://link.springer.com/content/pdf/10.1007/s00145-006-0347-3.pdf

https://link.springer.com/content/pdf/10.1007/s00145-006-0347-3.pdf

DKG Caveat

▶ Rabin et al DKG requires partially synchronous medium

▶ Kate&Goldberg DKG6 - does not but is a "mess"

▶ In Klutshnik the client is the center of a star topology where
messages between shareholders are will be e2e encrypted.

▶ Cannot change threshold without running a new DKG, but can
anytime increase N.

6
https://crysp.uwaterloo.ca/software/DKG/

https://crysp.uwaterloo.ca/software/DKG/

Protected channels7

7
https://github.com/Inria-Prosecco/noise-star/

https://github.com/Inria-Prosecco/noise-star/

Strong Authorization

Physical control, authorized_keys and macaroons

Macaroon8 authorization tokens

Macaroons are authentication tokens (cookies but better) that

▶ can be delegated

▶ can be attenuated

▶ carry their own proof

▶ can be extended with 3rd party caveats

▶ are simple to verify

▶ decouple authorization logic

8
https://research.google/pubs/pub41892/

https://research.google/pubs/pub41892/

Macaroons in Klutshnik

▶ new macaroon minted on DKG and bound to "keyid"

▶ default TTL 1 year

can be attenuated:

▶ to a client pubkey

▶ shorter expiration date

▶ action: update or decrypt

comes with handy CLI tool to operate on (klutshnik speci�c)
macaroons.

File encryption

Files in Klutshnik are encrypted with the DEK using the STREAM
construction from the paper: "Online Authenticated-Encryption
and its Nonce-Reuse Misuse-Resistance"9 using XSalsa20/Poly1305
from libsodium.

▶ online authenticated stream cipher

▶ no reordering of "segments"

▶ no truncation

▶ no release of ciphertext if mac is invalid

▶ etc

9
https://eprint.iacr.org/2015/189

https://eprint.iacr.org/2015/189

Key-updates

For each client KMS has secret key kc, and storage has public key
yc = gkc

▶ Encryption:

1. r = random(), ω = gr, dek = H(y r
c), and,

2. store (ObjId , ω, ciphertext = Encdek(Obj))

▶ Decryption:

1. retrieve (ObjId, ω, ciphertext),
2. dek = OPRF (kc , ω),
3. return plaintext = Decdek(ciphertext)

▶ Rotation and Update:

1. KMS generates k ′, and sends ∆ =
k
′
c

kc
, y ′

c = gk
′
c to storage

2. Storage replaces yc with y ′
c , and each (ObjId, ω, ct), with

(Obj, ω∆, ct)

tOPRF

▶ Key k is Shamir secret shared among n shareholders with
threshold t: shareholders Si holds share ki, where i<=n.

▶ It is very simple, just do a Lagrange interpolation in the
exponent.

▶ λi is the Lagrange coe�cient for index i:

▶
∏t

j=1,ESj ̸=i

ESj

i − ESj

▶ where ES is vector holding the indexes of the shareholders
participating in this protocol run.

tOPRF - two variants

1. Client blinds input x: r = random(), α = H ′(x)r , sends α to t
shareholders

If you know before step 2. the indexes of all t shareholders
participating in this run:

2. shareholder Si responds with βi = αλi ·ki ,

3. Client: fk(x) = H(x , (
∏t

j=1
βi)

1/r)

If you don't know the set shareholders before step 2:

2. shareholder Si responds with βi = αki ,

3. Client: fk(x) = H(x , (
∏t

j=1
βλ

i i)
1/r)

Threshold updateable OKMS

1. DKG a new shared value p, each shareholder holds pi

2. Multiparty computation of k * p

3. send pi to storage, which can reconstruct p, which is equal to
∆ in the non-threshold version.

Note: needs 2t+1 shareholders for the multiplication!
Note2: all shares must participate in an update, no post-factum
update possible without violating security guarantees. Also your
backup shares. . .

Klutshnik ops client inputs

▶ Encryption: the storage only needs the pubkey of the key it
encrypts to.

▶ Decryption: the client needs a Noise keypair that is permitted
by the KMS and an authorization macaroon for the keyid
necessary for the decryption.

▶ Key update: same as decryption.

It is possible to store the noise keypair and the macaroon in a
con�g �le. But why, when we have an tOPRF at our disposal?

tOPAQUE for storage of arbitrary blobs

▶ OPAQUE can store arbitrary e2e encrypted blobs on a server
(that's also what Whatsapp is doing for backups!) and all the
user needs is a password - preferably from SPHINX ;)

▶ Using our existing KMS infra, which does already tOPRF and
also DKG it is trivial to build a threshold OPAQUE server
that stores encrypted data (keys & macaroons) unlocked by a
password.

▶ Check out opaque-store10 if you want this, it works with
klutshnik KMS servers. Perfect companion to SPHINX.

10
https://github.com/stef/opaque-store

https://github.com/stef/opaque-store

Use-cases

▶ encrypted archives

▶ passing border controls without being able to decrypt

▶ temporal sharing of �les

▶ better security if you don't have a hw token for your KEK

▶ if you need a committee to decrypt

Future

▶ raspi image

▶ port to ZephyrOS (bluetooth support)

▶ FUSE frontend

▶ threshold signature support

▶ threshold sphinx support

▶ generic OPRF/DKG server.

Poke at it

▶ try it out with docker https://github.com/v-p-b/klutshnik/tree/docker/docker

▶ stare at code: https://github.com/stef/klutshnik

https://github.com/v-p-b/klutshnik/tree/docker/docker
https://github.com/stef/klutshnik

?

Questions? Comments!

	Klutshnik!!5!

