Klutshnik!!5!

stf

<2023-07-14 Fri>

This is a
DEMONSTRATION
RECORD

- Kegper Of Che Seven Keys

Part |

A detour: Hybrid crypto

[..]Jhybrid cryptosystem is one which combines the conve-
nience of a public-key cryptosystem with the efficiency of
a symmetric-key cryptosystem.!

1 oo - .
https://en.wikipedia.org/wiki/Hybrid_cryptosystem

https://en.wikipedia.org/wiki/Hybrid_cryptosystem

PGP

% echo "asdf" | gpg --encrypt --recipient aaaaaaaaaa | pgpdump
01d: Public-Key Encrypted Session Key Packet(tag 1) (524 bytes)
New version(3)
Key ID - 0x123456789abcdef0
Pub alg - RSA Encrypt or Sign(pub 1)
RSA m~e mod n(4092 bits) - .
->m = sym alg(l byte) + checksum(2 bytes) + PKCS-1 block type
New: Symmetrically Encrypted and MDC Packet(tag 18) (64 bytes)
Ver 1
Encrypted data [sym alg is specified in pub-key encrypted session key]
(plain text + MDC SHA1(20 bytes))

AGE

The textual file header wraps the file key for one or more
recipients, so that it can be unwrapped by one of the cor-
responding identities. It starts with a version line, followed
by one or more recipient stanzas, and ends with a MAC.?

age-encryption.org/vi

-> X25519 XE10dJ6y3C7KZkgmgWUicg63EyXJiuBIJWSPAYJ/cYBE
qRSOAMjdjPvZ/WTOSU2KLAG+PIooA3hy38SvLpvaClE

--- HK2NmOBN9DpqOGw6xMCuhFcQlQLvZ/wQUi/2scLG75s

2
https://github.com/C25P/C2SP/blob/main/age.md

https://github.com/C2SP/C2SP/blob/main/age.md

Key Management Service (KMS)

Three parties:
» Client
» (remote) Storage
» Key Management Server (KMS)

Traditional KMS encryption

1. KMS has key-encryption-key (KEK)

2. Client chooses data-encryption-key (DEK),
ciphertext = encrypt(DEK, data)

3. Client Sends (DatalD, DEK) to KMS

4. KMS responds to client with
(DatalD, wrapped dek = Wrap(KEK, DEK))

5. Client sends (DatalD, wrapped _dek, ciphertext) to Storage

Traditional KMS decryption

oA Wb

Client gets (DatalD, wrapped _dek, ciphertext) from Storage
Client sends (DatalD, wrapped _dek) to KMS

KMS unwraps the key DEK = Unwrap(KEK , wrapped _dek)
KMS returns (DatalD, DEK)

Client decrypts ciphertext: data = decrypt(DEK, ciphertext)

Traditional KMS sucks

v

KMS knows all DEKs

DEK depends on security of transport between KMS/Client
(TLS)

Middlebox and endpoints of TLS also see DEK
» KMS can trace usage of DatalDs
» Updating KEK is costly - increases time-to-delete old KEK

v

v

Oblivious KMS

Use an OPRF!I5!
DEK = OPRF (k., DatalD)
BOOM! Mind blown.

OKMS rulez!

» Updating KEK is costly - increases time-to-delete old KEK

Updateable OKMS

Use an updateable OPRF!!I5!*
> KMSknowsall DEKs

* must have at least 2t + 1 shareholders!

Threshold UOKMS

Use an updateable threshold OPRF!!5!
BOOM: no more SPoF!

UOKMS?

"Updatable Oblivious Key Management for Storage Systems"
— Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch

3https ://eprint.iacr.org/2019/1275

https://eprint.iacr.org/2019/1275

Advantages over KMS

v vVvyYyyvyy

v

hides keys and object identifiers from the KMS,
offers unconditional security for key transport,
provides key verifiability,

reduces storage,

distributed threshold implementation that enhances protection
against server compromise & denial.

updatable encryption capability that supports key updates (aka
key rotation),

very efficient non-interactive update procedure,
forward and post-compromise security
public key encryption

Comparison with legacy tools

Pro:

cheap key-rotation

forward & post-compromise security,

threshold operation (t peers need to agree to decrypt)

better resilience against denial/loss of keys.

vvyyvyyvyy

nice for traveling into hostile countries
» KEKSs not stored next to ciphertexts
Contra:
» Online
» Strong authentication needed

are these really disadvantages though?

Anyway

threshold construction
+
updateable encryption

are some really sexy properties, gotta have 'em!
thus. ..

Klutshnik

Klutshnik Overview

The heart of Klutshnik - tOPRF*

INPUT —

“oufWT

the shared secret KMS KEK is never reconstructed!

4TOF’PSS: Cost-minimal Password-Protected Secret Sharing based on Threshold OPRF
https://eprint.iacr.org/2017/363

https://eprint.iacr.org/2017/363

Distributed Key Generation (DKG)?

The "shareholders" participate in a protocol in which they create a
shared secret split among them just like Shamirs Secret Sharing,
but do so in a way, that there is no central - trusted - third-party
and the shared secret itself is never reconstructed.

5Secure Distributed Key Generation for Discrete-Log Based Cryptosystems
https://link.springer.com/content/pdf/10.1007/s00145-006-0347-3.pdf

https://link.springer.com/content/pdf/10.1007/s00145-006-0347-3.pdf

DKG Caveat

» Rabin et al DKG requires partially synchronous medium
Kate&Goldberg DKG® - does not but is a "mess"

» In Klutshnik the client is the center of a star topology where
messages between shareholders are will be e2e encrypted.

v

» Cannot change threshold without running a new DKG, but can
anytime increase N.

6https ://crysp.uwaterloo.ca/software/DKG/

https://crysp.uwaterloo.ca/software/DKG/

Protected channels’

https://github.com/Inria-Pro

/noise-star/

https://github.com/Inria-Prosecco/noise-star/

Strong Authorization

Physical control, authorized keys and macaroons

[m]

=

Macaroon® authorization tokens

Macaroons are authentication tokens (cookies but better) that
» can be delegated
can be attenuated
carry their own proof

>
>
» can be extended with 3rd party caveats
» are simple to verify

>

decouple authorization logic

8https ://research.google/pubs/pub41892/

https://research.google/pubs/pub41892/

Macaroons in Klutshnik

» new macaroon minted on DKG and bound to "keyid"
» default TTL 1 year
can be attenuated:
» to a client pubkey
» shorter expiration date
» action: update or decrypt

comes with handy CLI tool to operate on (klutshnik specific)
macaroons.

File encryption

Files in Klutshnik are encrypted with the DEK using the STREAM
construction from the paper: "Online Authenticated-Encryption
and its Nonce-Reuse Misuse-Resistance"® using XSalsa20/Poly1305
from libsodium.

» online authenticated stream cipher

» no reordering of "segments"

» no truncation

» no release of ciphertext if mac is invalid
>

etc

ghttps ://eprint.iacr.org/2015/189

https://eprint.iacr.org/2015/189

Key-updates

For each client KMS has secret key k¢, and storage has public key
Ye = gkc
» Encryption:
1. r = random(), w = g", dek = H(y}), and,
2. store (Objld, w, ciphertext = Encger(Oby))
» Decryption:

1. retrieve (Objld, w, ciphertext),
2. dek = OPRF (k¢,w),
3. return plaintext = Decgek(ciphertext)
» Rotation and Update:
1. KMS generates k', and sends A = %,yé = gk to storage

2. Storage replaces y. with y/, and each (Objld, w, ct), with
(Obj, w?, ct)

tOPRF

Key k is Shamir secret shared among n shareholders with
threshold t: shareholders S; holds share k;, where i<=n.
It is very simple, just do a Lagrange interpolation in the
exponent.
Aj is the Lagrange coefficient for index i:

ES;
Hf:1,Esj¢i ﬁ
where ES is vector holding the indexes of the shareholders
participating in this protocol run.

tOPRF - two variants

1. Client blinds input x: r = random(),a = H'(x)", sends « to t
shareholders

If you know before step 2. the indexes of all t shareholders
participating in this run:

2. shareholder S; responds with 8; = o'k,

3. Client: fx(x) = H(x, (Hj:l BHY)
If you don’t know the set shareholders before step 2:

2. shareholder S; responds with §; = o,

3. Client: fic(x) = H(x, (TT/—, B})Y")

Threshold updateable OKMS

1. DKG a new shared value p, each shareholder holds p;

2. Multiparty computation of k * p

3. send p; to storage, which can reconstruct p, which is equal to

A in the non-threshold version.

Note: needs 2t+1 shareholders for the multiplication!
Note2: all shares must participate in an update, no post-factum
update possible without violating security guarantees. Also your
backup shares. ..

Klutshnik ops client inputs

» Encryption: the storage only needs the pubkey of the key it
encrypts to.

» Decryption: the client needs a Noise keypair that is permitted
by the KMS and an authorization macaroon for the keyid
necessary for the decryption.

» Key update: same as decryption.

It is possible to store the noise keypair and the macaroon in a
config file. But why, when we have an tOPRF at our disposal?

tOPAQUE for storage of arbitrary blobs

» OPAQUE can store arbitrary e2e encrypted blobs on a server
(that’s also what Whatsapp is doing for backups!) and all the
user needs is a password - preferably from SPHINX ;)

» Using our existing KMS infra, which does already tOPRF and
also DKG it is trivial to build a threshold OPAQUE server
that stores encrypted data (keys & macaroons) unlocked by a
password.

» Check out opaque-storel® if you want this, it works with
klutshnik KMS servers. Perfect companion to SPHINX.

1
ohttps ://github.com/stef/opaque-store

https://github.com/stef/opaque-store

Use-cases

vVvyyvyyvyy

encrypted archives

passing border controls without being able to decrypt
temporal sharing of files

better security if you don’t have a hw token for your KEK

if you need a committee to decrypt

Future

vVvyyVvVvyywyypy

raspi image

port to ZephyrOS (bluetooth support)
FUSE frontend

threshold signature support

threshold sphinx support

generic OPRF/DKG server.

Poke at it

> try it out with docker hetps://github. com/v-p-b/klutshnik/tres/docker/docker

P stare at code: nitps://github.con/stef/klutshnik

https://github.com/v-p-b/klutshnik/tree/docker/docker
https://github.com/stef/klutshnik

Questions? Comments!

	Klutshnik!!5!

