
Fantastic OPRFs and where to �nd them

stf

<2023-07-15 Sat>



Overview

1. theory, mostly based on the awesome SoK: OPRFs1, by
Casacuberta, Hesse & Lehmann

2. practical examples

1
https://eprint.iacr.org/2022/302

https://eprint.iacr.org/2022/302


Oblivious Pseudo Random Functions (OPRF)

A building block for privacy.

▶ oblivious keyword search (KS)

▶ private information retrieval (PIR)

▶ private set intersection (PSI)

▶ password-protected secret sharing (PPSS/TPASS)

▶ password-authenticated key exchange (PAKE)

▶ single sign-on (SSO) with privacy

▶ cloud key management

▶ de-duplication systems

▶ secure pattern matching, and

▶ "untraceable" contact tracing



Step-by-step

▶ what is an F?

▶ what is an RF?

▶ what is a PRF?

▶ and �nally! what is an OPRF?



Functions (F)

f : {0, 1}m → {0, 1}n

▶ De�nition: A mapping between input values and output values.

▶ Not to be confused with a subroutine.

▶ Most of the time algorithmic, sometimes only mapping tables.



Random Functions (RF)

f : {0, 1}m R−→ {0, 1}n

▶ Function where input values are randomly mapped to output
values.

▶ Theoretical: "too big to store, too slow to compute" 2, 3

▶ Random Oracle Model 4, 5, 6

2
https:

//blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-a3/
3
https://blog.cryptographyengineering.com/2011/10/08/what-is-random-oracle-model-and-why-2/

4
https:

//blog.cryptographyengineering.com/2011/10/20/what-is-random-oracle-model-and-why_20/
5
https://blog.cryptographyengineering.com/2011/11/02/what-is-random-oracle-model-and-why/

6
https://blog.cryptographyengineering.com/2020/01/05/

what-is-the-random-oracle-model-and-why-should-you-care-part-5/

https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-a3/
https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-a3/
https://blog.cryptographyengineering.com/2011/10/08/what-is-random-oracle-model-and-why-2/
https://blog.cryptographyengineering.com/2011/10/20/what-is-random-oracle-model-and-why_20/
https://blog.cryptographyengineering.com/2011/10/20/what-is-random-oracle-model-and-why_20/
https://blog.cryptographyengineering.com/2011/11/02/what-is-random-oracle-model-and-why/
https://blog.cryptographyengineering.com/2020/01/05/what-is-the-random-oracle-model-and-why-should-you-care-part-5/
https://blog.cryptographyengineering.com/2020/01/05/what-is-the-random-oracle-model-and-why-should-you-care-part-5/


Pseudo Random Functions (PRF)8

f : {0, 1}k × {0, 1}m R−→ {0, 1}n

▶ Goldreich, Goldwasser and Micali ('86)

▶ De�nition: A function that can be used to generate output
from a random seed and a data variable, such that the output
is computationally indistinguishable from truly random
output.7

▶ Like a keyed-hash or MAC (HMAC)

7
https://csrc.nist.gov/glossary/term/pseudorandom_function

8
https://www.cs.umd.edu/~jkatz/crypto/f02/lectures/lecture15.pdf

https://csrc.nist.gov/glossary/term/pseudorandom_function
https://www.cs.umd.edu/~jkatz/crypto/f02/lectures/lecture15.pdf


Oblivious Pseudo Random Functions (OPRF)

Client has m, server has k:

f : {0, 1}k × {0, 1}m R−→ {0, 1}n

Client learns the result, server learns nothing.

Like an interactive/online/MPC keyed hash/MAC.



OPRF techniques

▶ Naor and Reingold ('04) + OT/HE

▶ Dodis-Yampolskiy PRF + HE

▶ OT/MPC

▶ (2)HashDH



Naor-Reingold PRF ('04)

k := (a0, ...an)
R←− Zn+1

q

fk(m) := ga0·
∏n

i=1 a
mi
i

add some Oblivious Transport (OT) or Homomorphic Encryption
(HE), shake and voilá: an OPRF



WTH: OT?

In cryptography, an oblivious transfer (OT) protocol is a

type of protocol in which a sender transfers one of poten-

tially many pieces of information to a receiver, but remains

oblivious as to what piece (if any) has been transferred.9(
1

2

)
OT k - send 2 k-bit messages, only one is delivered, sender has

no clue which.

9
https://en.wikipedia.org/wiki/Oblivious_transfer

https://en.wikipedia.org/wiki/Oblivious_transfer


OT from an OPRF!

1. Alice has m0 and m1, and a random key k, she calculates
c0 ← m0 ⊕ fk(0)
c1 ← m1 ⊕ fk(1)
sends c0 and c1 to Bob.

2. Alice and Bob execute an OPRF protocol, from Alice with
input k, and Bob with input b ∈ 0, 1: Bob learns: fk(b)

3. Bob can then decrypt mb ← cb ⊕ fk(b) and thus learns mb,
but not the other message.



Naor-Reingold/OT OPRF ('04)



Dodis-Yampolskiy PRF

fDYk (m) := g
1

k+m



Dodis-Yampolskiy OPRF



Generic MPC OPRF

f = AES - is also PQ!



Generic OT OPRF



HashDH

fHk (m) := H(m)k



2HashDH

f2Hk (m) := H ′(m,H(m)k)



Protocol



Properties

src: SoK OPRFs



Partially-oblivious PRFs (POPRF)

fk(mpriv ,mpub)

▶ initially bilinear parings-based

▶ fmodDYk (mpriv ,mpub) := H‘(mpriv ,mpub,H(mpriv )
1

k+mpub )

▶ fk(mpriv ,mpub) := f ′
PRF (k,mpub)

(mpriv )



Veri�able OPRF (VOPRF)

▶ Client can verify that the server used k correctly, and that it is
the same over repeated OPRF invocations.

▶ Either by publishing a "public key" of k, or some
zero-knowledge proof.



Committed I/O

▶ Client commits to the input value or the output value using
Pedersen commitments.

▶ This can prove that the input to the OPRF is a value from an
previously generated value in the Protocol.

▶ For outputs the commitment can prove in later steps of a
protocol, that the value is the output of the OPRF.



Updateable OPRF

Updateable OPRFs allow for key rotation, in order to minimize the
risk and impact of key exposure. It allows a client to update their
result of a previous OPRF run with a new key of the server.

1. assuming the OPRF calculates mk

2. server updates k to k ′, calculates ∆ = k ′

k
and sends ∆ to the

client

3. the client updates a previous calculation of fk(m) by raising it

to ∆: fk ′(m) = fk(m)∆ = mk k′
k

This can provide proactive or post-compromise security.



Distributed and Threshold OPRFs (t-OPRF)

▶ additive sharing → Distributed OPRFs

▶ DH-based OPRFs + Shamir's secret sharing → t-OPRFs

provides resilience against:

▶ denial of service attacks or loss of SPoF

▶ key compromise

▶ protection for low entropy inputs



Batching

Multiple parallel execution of an OPRF using either the same key or
input, while being cheaper than running all of these sequentially.
This is most useful for for private set intersection.



Other properties

▶ Weak OPRFs

▶ Programmable

▶ 3-party

▶ Convertability

▶ Extendable



Hey, what about pqOPRF?
well.

▶ "HashDH-based OPRFs information-theoretically blind the
input of the user, and hence protect it even against quantum
computers." - but not the key. . .

▶ Round-optimal Veri�able Oblivious Pseudorandom Functions
From Ideal Lattices https://eprint.iacr.org/2019/1271

▶ Oblivious Pseudorandom Functions from Isogenies
https://eprint.iacr.org/2020/1532

▶ OPRFs from Isogenies: Designs and Analysis
https://eprint.iacr.org/2023/639

▶ Crypto Dark Matter on the Torus: Oblivious PRFs from
shallow PRFs and FHE https://eprint.iacr.org/2023/232

▶ A Post-Quantum Round-Optimal Oblivious PRF from
Isogenies https://eprint.iacr.org/2023/225

▶ OT OPRF with AES is PQ! but does not support many
properties

https://eprint.iacr.org/2019/1271
https://eprint.iacr.org/2020/1532
https://eprint.iacr.org/2023/639
https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2023/225


Which to use?

▶ DY if you need I/O committed, or need partial-oblivious
veri�ability

▶ OT+AES if you need speed and no special properties

▶ 2HashDH for everything else, unless you need updateability,
then HashDH.



POPRF, VOPRF and OPRF IRTF/CFRG speci�cation

▶ https://github.com/cfrg/draft-irtf-cfrg-voprf/

▶ https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

HashDH based, depends on hash-to-curve - which is di�cult.

https://github.com/cfrg/draft-irtf-cfrg-voprf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/


PSI

▶ G Password Checkup - similar to haveibeenpwned

▶ Contact Discovery (Wickr 10)
10

https://wickr.com/better-contact-discovery/

https://wickr.com/better-contact-discovery/


SSO

▶ "PESTO: Proactively Secure Distributed Single Sign-On, or
How to Trust a Hacked Server11" uses a dpOPRF with bilinear
pairings for the partial obliviousness and a DSIG, compatible
with OATH and OIDC.

11
https://eprint.iacr.org/2019/1470

https://eprint.iacr.org/2019/1470


SPHINX12

▶ Information Theoretically secure password "store"

▶ "Could be hosted by TLA" - and your passwords would still be
safe!

▶ Server does know nothing about input or output password!

▶ Resistant to o�ine bruteforce attacks!

▶ No encryption! Leak, much? No problem!!5!

▶ No encryption! No global encryption key! Can use multiple
master passwords!

▶ KISS! does one thing, but does it right!

▶ https://ctrlc.hu/~stef/blog/posts/sphinx.html

▶ https://github.com/stef/pwdsphinx/

in debian and derivatives!

12
https://eprint.iacr.org/2018/695

https://ctrlc.hu/~stef/blog/posts/sphinx.html
https://github.com/stef/pwdsphinx/
https://eprint.iacr.org/2018/695


SPHINX

1. if you don't need multi-device support just do rwd=PRF(key,
concat(password,user,host))

2. if you need multi-device support then using 2HashDH is
SPHINX: rwd=OPRF(k,password)

3. You can convert the binary output to ASCII strings conforming
to password rules using simple conversions.

4. Using a random pad, you can even force short desired outputs
from the binary to ASCII conversion, by having
”desiredoutput” = rwd ⊕ pad



OPAQUE19

OPRF + AKE used by

▶ IRTF/CFRG draft13, 14

▶ libopaque15

▶ opaque-store16 - 1st public threshold-opaque
implementation!!5!

▶ TLS-OPAQUE17

▶ WhatsApp backup18

13
https://github.com/cfrg/draft-irtf-cfrg-opaque/

14
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/

15
https://github.com/stef/libopaque/

16
https://github.com/stef/opaque-store/

17
https://eprint.iacr.org/2023/220

18
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

19
https://eprint.iacr.org/2018/163

https://github.com/cfrg/draft-irtf-cfrg-opaque/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://github.com/stef/libopaque/
https://github.com/stef/opaque-store/
https://eprint.iacr.org/2023/220
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://eprint.iacr.org/2018/163


OPAQUE



VTUOKMS21 aka Klutshnik

strong authentication. https://klutshnik.info/

▶ similar: "DPaSE: Distributed Password-Authenticated
Symmetric Encryption"20 uses an extendable dpOPRF with
bilinear pairings for the partial obliviousness. Cannot be
threshold, and the second evaluation is not veri�able.

20
https://eprint.iacr.org/2020/1443

21
https://eprint.iacr.org/2019/1275

https://klutshnik.info/
https://eprint.iacr.org/2020/1443
https://eprint.iacr.org/2019/1275


Klutshnik



Privacy Pass23

blind signature, to see less captchas when using tor

1. server publishes "long-term" gk

2. user mints: tk, zkp(k) = VOPRF(t,k)

3. user redeems: t,M,HMAC (tk ,M)→ server

4. server allows if HMAC (tk ,M) == HMAC (PRF (t, k),M) and
notes down t to prohibit double-spending

But note:
Landau's Law: A cryptosystem is incoherent if its imple-

mentation is distributed by the same entity which it pur-

ports to secure against.22

22
https://devever.net/~hl/webcrypto

23
https://privacypass.github.io/protocol/

https://devever.net/~hl/webcrypto
https://privacypass.github.io/protocol/


Summary

OPRFs are cool!!5! Use/demand them:

▶ When you care about privacy!

▶ When you have 2 parties.

▶ Use when you want a lightweight client - no or minimal data
and/or computation.

▶ When you want to protect the data on the client from the
server.

▶ When you want to convert a low-entropy input to a
high-entropy strong cryptographic value.

▶ When you need Interactive hashing - e.g. for rate-limiting,
prohibit pre-computation.



?

Questions? Comments!



TEST DELETE BEFORE PUBLISHING

UE Node B RNC

RRC Connection Request
t0 t1

Radio Link Setup Request
t2

Radio Link Setup Response

Establish Request

Establish Con�rm

RRC Connection Setup

Synchronization Indication

RRC Connection Setup Complete


	Fantastic OPRFs and where to find them

