
Why use SPHINX instead of random other popular
password manager?

stf

<2022-07-02 Sat>

Disclaimer

This talk considers only one perspective: the security of your
passwords. UI/UX and other fancy features are not in scope and
can a�ect your choice of tool.

Threats & Mitigations

▶ password recovery attack → High entropy (>80bit) passwords

▶ password reuse attack → unique passwords

▶ password db leak → no db-based pwd manager

▶ phishing attacks → force bind passwords to services

▶ forgetting master password → analog solutions

▶ key-sni�ng the master password →
_
("))/

_

password safe/keepass/keepassX/keepassXC

ancient o�ine encrypted xml �le with structured free-text

keepass et al crypto1

▶ masterkey := sha256(masterpassword || ?key�le)

▶ v1: aes-cbc/two�sh(aes-kdf(masterkey),database) +
sha256(database)

▶ v2: k := aes-kdf/argon2(id|d)(masterkey) ; ciphertext :=
aes-cbc/chacha20(k, (database)) + hmac-sha256(k,
ciphertext)

In case of password db (which is probably next to the key�le - if
used) leak allows an o�ine-bruteforce attack against the
masterpassword. if you use v1 upgrade asap if possible.

1
src: https://keepass.info/help/base/security.html

https://keepass.info/help/base/security.html

pass / pwd.sh

gpg assymetrically o�ine encrypted �les with free text.

pass / pwd.sh crypto

▶ KDF is iterated-and-salted S2K(sha1), similar to pbkdf2,
which is quite GPU friendly2

▶ Encryption: k = random(), encryptasym(pubkey, k) ||
aes128-cfb/cast5(k,�le)

In case of a password db leak also the private gpg key needs to be
leaked.

▶ if the private key is not encrypted then win,

▶ else o�ine bruteforce attack against the gpg key

Not only provides access to all passwords, but also to all other
cryptograms protected by that key.
If combined with a HW PGP token like a cryptostick, this can be
pretty secure though.

2
https://crypto.stackexchange.com/a/3255

https://crypto.stackexchange.com/a/3255

passage

like pass, but instead of gpg age, which means nicer crypto algo
defaults.
In case of a password db leak also the private gpg key needs to be
leaked.

▶ if the private key is not encrypted then win,

▶ else o�ine bruteforce attack against the gpg age key

Not only provides access to all passwords, but also to all other
cryptograms protected by that key.

bitwarden

online encrypted �les with free text.

bitwarden crypto

▶ items encrypted with aes-cbc.

▶ javascript crypto.
src: https://bitwarden.com/images/resources/security-white-paper-download.pdf/

https://bitwarden.com/images/resources/security-white-paper-download.pdf/

1password

online encrypted �les with free text

1password crypto3

Key Derivation

1. p � unicodenfkd(trim(password))

2. s � HKDF(salt, version, email, 32)

3. km � PBKDF2-SHA256(p, s, 100000)

4. kA � HKDF(secret-key, version, ID, ||km||)

5. km � km ⊕ kA

6. priv, pub = rsa-2048-keypair()

7. pkenc = aes-gcm(km, priv)

8. vaultkey = random(256b)

9. vkenc = rsa-oaep(pub, vaultkey)

step 1-5: for SRP auth key, but with di�erent salt.

3
src: https://1passwordstatic.com/files/security/1password-white-paper.pdf

https://1passwordstatic.com/files/security/1password-white-paper.pdf

1password crypto cont'd

▶ basically like pass/gpg , but online, aes256gcm instead of
aes128cfb, and with a secret key mixed into the master
password.

▶ the secret key mixed into the master password prohibits the
1password server to bruteforce the master password, which is
cool.

▶ since accessing the encrypted keys requires SRP
authentication, either the encrypted keys need to be leaked
from the client when legitimally authenticated - but then also
the master password could be keylogged.

▶ Auth attempts are rate limited.

▶ unlike the others, this seems to eliminate o�ine
bruteforce-attacks, which is also cool.

Crypto so far

▶ Home-cooked KDF (aes-kdf, s2k) or pbkdf, maybe argon2

▶ symmetric encryption: aes-(cbc/cfb/gcm)

▶ sometimes RSA

▶ sometimes with an additional secret key mixed into the master
key.

▶ either antique and/or over-engineered

SPHINX

magic silverbullets to the rescue \o/

SPHINX4
- a password Store that Perfectly Hides from Itself (No eXaggeration)

rwd := Hashmemhard(pwd ||Hash2curve(pwd)∗r∗kr
)

4https://eprint.iacr.org/2015/1099

https://eprint.iacr.org/2015/1099

Appeal to authority

Designed by Levchin award winner Hugo Krawczyk, who also came
up with HMAC, HKDF, OPAQUE, HMQV, SIGMA, UMAC, etc.

SPHINX Bene�ts

▶ information theoretically secure5 password store

▶ manager does not know anything about the password

▶ manager salt independent from input/output passwords

▶ can use arbitrary number of "master" passwords

▶ unless both k and rwd leak only online bruteforce attacks
possible.

▶ KISS: produce only high entropy non-dictionary passwords6.

▶ no synching needed

Cons:

▶ no backups, use password resets or analog means to store rwds
for recovery.

▶ online

▶ less polished UI

5
secure against adversaries with unlimited computing resources and time.

6
we have a mode to set arbitrary max ~40 ascii strings, but use this only if really necessary.

SPHINX ecosystem

▶ https://github.com/stef/pwdsphinx/blob/master/

whitepaper.org

▶ my server: https://sphinx.ctrlc.hu/

▶ https://github.com/stef/libsphinx

▶ https://github.com/stef/pwdsphinx

▶ https://github.com/stef/websphinx-chrom

▶ https://github.com/stef/websphinx-firefox

▶ https://github.com/dnet/androsphinx

▶ https://github.com/stef/winsphinx

▶ https://github.com/stef/zphinx-zerver/

▶ https://github.com/D3vl0per/zphinx-zerver-docker/

▶ https://github.com/ngi-nix/opaque-sphinx

▶ soon in a debian-derivative distro of your choice.

https://github.com/stef/pwdsphinx/blob/master/whitepaper.org
https://github.com/stef/pwdsphinx/blob/master/whitepaper.org
https://sphinx.ctrlc.hu/
https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx
https://github.com/stef/websphinx-chrom
https://github.com/stef/websphinx-firefox
https://github.com/dnet/androsphinx
https://github.com/stef/winsphinx
https://github.com/stef/zphinx-zerver/
https://github.com/D3vl0per/zphinx-zerver-docker/
https://github.com/ngi-nix/opaque-sphinx

Conclusion

if you are using keepass, pass, bitwarden, or similar password
managers, you might want to switch7 or slowly migrate to sphinx to
handle your passwords.

7importers from these to sphinx are coming real soon now �

Questions

?

	Password Managers

